
44 The Delphi Magazine Issue 35

Surviving Client/Server:
ODBMS In Practice, Part 1
by Steve Troxell

Last month we started to look at
object oriented database sys-

tems from a conceptual point of
view. This month, we’re going to
roll up our sleeves and take an
actual ODBMS product through
some basic operations to get a feel
for how working with these sys-
tems differs from more traditional
database systems. We’re going to
use the Jasmine 1.1 object oriented
database system, which was
recently released by Computer
Associates. A free Jasmine Devel-
oper CD can be requested through
their website at www.cai.com/
products/jasmine.htm.

Before we get on with what this
article is about, let me point out
what it’s not about. This is not a
product review of Jasmine, nor is it
a step-by-step tutorial for using
Jasmine. It is a detailed look at how
we would set up an object oriented
database, with Jasmine being the
tool of choice. That being said, let’s
dig in.

As is the case with nearly any
technology, we have some new
terms to learn before we can really
know our way around. Fortunately
most of these terms can be consid-
ered to be new names for familiar
concepts such as databases,
tables, columns, and rows. How-
ever, there are subtle differences
in capabilities, otherwise we
wouldn’t need to give them new
names. Figure 1 summarizes the
ODBMS terminology and their
closest RDBMS parallels.

The central database unit in
Jasmine is the ‘class’, which is
essentially an object oriented ver-
sion of a table. In practice, we
might use the term ‘class defini-
tion’ to refer to the metadata
describing the structure of the
data held by the class, and the term
‘class’ when referring to the con-
tainer of the data (what we would
normally think of as a table).

ODBMS Term RDBMS Equivalent

Class Family Database (roughly)

Class Table or Datatype

Property Column

Instance Row

Method Stored procedure or Trigger

➤ Figure 1

Where a relational database would
have a table containing several
rows of data organized into col-
umns of discrete values, we would
have a class containing instances of
data organized into properties.

The term ‘class’ is also used to
describe what we would think of as
a datatype, like integer or string.
Because of the general nature of
object oriented systems, a class
describes the characteristics of a
‘thing’, whether that ‘thing’ be a
simple value such as an integer, or
a complex collection of data such
as a table. Remember when I said
there are subtle differences in the
concepts and strict parallels with
traditional terms is generally not
possible? Well, here you go. To
avoid confusion, I’ll refer to classes
that represent tables in a database
as ‘data container classes’.

All classes in the Jasmine system
are derived from the Jasmine class
hierarchy as shown in Figure 2.
Like the Delphi VCL, everything in
the system has a common ances-
tor, Object. Data container classes
always derive from the Composite
class. You can see that datatype
classes as well as data container
classes share the same class
ancestry, so they are interchange-
able in some respects. For exam-
ple, the return type of a method
function could be a simple
datatype or an entire instance from
a data container.

All new classes are derived from
an existing class. Classes above a
given class in the hierarchy are

said to be superclasses of the given
class. For example, Atomic is a
superclass of Numeric, and Literal
is a superclass of Atomic. But Lit-
eral is also a superclass of Numeric.
A class derived from another class
is called a subclass and inherits all
the properties and methods of all
the superclasses above it.

Class Families
Jasmine uses the concept of a class
family to group related class defini-
tions. For instance, all of the class
definitions for Jasmine’s Fashion
Boutique tutorial are kept in a class
family called CAStore (Computer
Associates Store). Class families
can be roughly thought of as data-
bases, and they are used as such in
query references. But they are
more accurately thought of as
metadata catalogs, or schemas.
For example, two class families can
be merged to create a new class
family with all the class definitions
of both original families.

This is how Jasmine implements
support for multimedia classes.
You’ll notice that the object hierar-
chy shown in Figure 2 does not
indicate any support for multi-
media datatypes. That’s because
Jasmine implements all the multi-
media functionality in a separate
class family called mediaCF, rather
than burden every database with
the extensive multimedia classes if
they aren’t needed. If you wanted
to develop a database supporting

July 1998 The Delphi Magazine 45

multimedia datatypes, you would
merge the mediaCF class family into
your own class family to add multi-
media capabilities. This also
allows third party vendors to
develop any number of specialized
class families which you could
then merge into your own
architecture.

The critical point to remember
about class families is that sub-
classes can only be created from
classes in the same family. One
exception is that all data container
classes must descend from Compos-
ite. When you create a class
family, all your top level classes
will descend from Composite, which
obviously is not in the class family
you just created.

Jasmine allows you to set a
default class family so you don’t
have to constantly specify the
family name. However, in some
contexts you may have to qualify a
class name with its family name,
for example mediaCF::MMSoundFile.
All Jasmine system classes shown
in Figure 2 are defined in the class
family systemCF. System classes
never need to be qualified unless
there is another class with the
same name in the default class
family.

Object Query Language
Relational databases typically rely
on SQL as the database query lan-
guage. Object databases employ a
similar language with an object ori-
ented flair. The general term for
this language is Object Query Lan-
guage (OQL) whereas Jasmine’s
specific implementation is called
Object Database Query Language
(ODQL).

ODQL is structured very much
like C++. ODQL statements and
object names are case sensitive.
This includes class, property, and

method names. You can define
variables and have flow control
statements in ODQL, and all
statements must be terminated
with a semi-colon.

ODQL statements can be exe-
cuted interactively with a com-
mand line utility provided with
Jasmine called codqlie. This is
roughly equivalent to a com-
mand line ISQL utility provided
with a relational database. ODQL
statements can also be placed in
text files and run as scripts via
the codqlie utility. It is also
possible to send ODQL state-
ments to the server from a client
application and have the client
process the results. In this instal-
ment, we will see lots of examples
of using ODQL to define database
structures, and next month we’ll
get into more details about using
ODQL for data access and
manipulation.

Creating A Class
There are two steps to creating a
Jasmine class: defining the class
and building it. Listing 1 shows
how we use the ODQL command
defineClass to create a class called
Person. The first clause in our defi-
neClass command identifies the
immediate superclass of our class.
All data classes must ultimately
descend from the system class
Composite (refer back to Figure 2).
So we identify Composite as the
superclass of Person, which means
Person inherits all the characteris-
tics of Composite. Then we list off
the properties for this class along
with their datatypes. The conven-
tion is to list the datatype first, fol-
lowed by the property name,
followed by any qualifiers. The key-
word instance means the proper-
ties that follow are instance-level
properties, as opposed to class-
level properties which we will get
to in a moment.

Values within class properties
can be constrained, similar to SQL
tables. The mandatory constraint
means a value is required for that
property when an instance is cre-
ated (similar to NOT NULL). If no
value is explicitly given for a prop-
erty, then its value is NIL. NIL func-
tions very much like NULL in a

relational database. The mandatory
constraint means that an error is
generated if an attempt is made to
assign NIL to the property. We can
also specify unique constraints
and provide default values.

The String datatype functions
similarly to SQL’s VarChar
datatype. We can indicate a maxi-
mum length as shown for the State
and ZipCode fields, or by not speci-
fying a length, the space used by
the value is limited by the system
maximum of 65,536.

Once a class is defined, it must
be built before it can be used or
before any instances can be cre-
ated for it. Before a class is built, its
definition can be redefined at will
without the need to delete the
existing definition. Also, refer-
ences to other classes do not
require that those classes exist or
are even defined yet. However,
before a class can be built, all refer-
enced classes must already have
been defined, but not necessarily
built. To build a class, we simply
call the buildClass ODQL com-
mand and name the class, like this:
buildClass ExampleCF::Person;.

Subclasses
It seems pretty obvious that the
Person class is intended to be a
base class for different types of
people like customers, employees,
managers, contractors, etc. Let’s
create our first subclass for
employees using the ODQL shown

defineClass Person
super: Composite

{
instance:
String FirstName mandatory:;
String LastName mandatory:;
String Address;
String City;
String[2] State;
String[10] ZipCode;
Date DateOfBirth;

};

➤ Listing 1

Object
Literal

Tuple

Numeric
Atomic

Decimal
Integer
Real

Bytes
String
Byte Sequence

Chrono

TimePoint

Date

Boolean

Entity

Composite

Collection

List

User-Defined

Array
Bag

Set

Iterator

➤ Figure 2

46 The Delphi Magazine Issue 35

in Listing 2. Since we are descend-
ing from Person, that becomes the
superclass for Employee, and we
then inherit all the properties from
Person. The only additional proper-
ties we will add are an employee
number, a department reference
and a list of hobbies for the
employee (we are a particularly
nosey company).

But wait. Our class definition
shows not three properties but
four, including one called NextEm-
ployeeNo. The types of properties
we’ve been dealing with are
instance-level properties, which
means that separate property
values are held for each instance.
NextEmployeeNo is an example of a
class-level property.

Class-Level Properties
A class-level property is accessed
just like any other property, but its
value does not change from
instance to instance. Values for
class-level properties are fixed for
every instance in the class. Note
carefully that I said they were fixed,
not constant. Values in class-level
properties can change, but when
they do, they change for every
instance in the class. Think of them
as ‘global variables’ in the class
that retain the same value no
matter what instance you are
examining at the moment. They are
simply accessed as a property, but
their values are not dependent on
nor affected by the values in the
instance.

In this case, we are holding an
integer value to use as the next
employee number when we create
a new employee. Note that this is in
no way an automatic function of
the class. We will have to provide
code to increment NextEmployeeNo
and assign it to EmployeeNowhen we
add a new instance. Normally, we
would do this by defining a method

for the class, and we would always
use that method when adding new
employees.

Multi-Valued Properties
The declaration of the Hobbies
property in Listing 2 looks a little
strange. The requirement is to
store zero or more names of hob-
bies the employee is interested in.
In an SQL table we could provide a
single varchar column with a
comma-separated list of hobbies.
Or we could create a separate
EmployeeHobbies table containing
an employee number and a varchar
field for the hobby name. There
would be a one-to-many relation-
ship between Employee and Employ-
eeHobbies. If we were really going to
town on this, we would define a
third table called Hobbies which
would have a hobby number and a
hobby name, and EmployeeHobbies
would be reduced to an intersec-
tion table containing employee
number and hobby number links.

In our class definition we have
simply made a multi-valued prop-
erty which holds more than one
value for a single instance of the
class. This is something that is not
possible with SQL tables. The
Employee.Hobbies property is
declared with the Bag keyword. A
bag is a collection of values of the
datatype given within the angled
brackets, in this case a collection
of strings. In Delphi terms, this is
similar in concept to the Params
property of the TDatabase class.
Strictly speaking Params is a single
instance of the TStrings class
though, not a true collection of
strings.

Looking back at the Jasmine
class hierarchy shown in Figure 2,
we see that the Bag class descends
from the Collection class and that
Bag, Array, List, and Set are
specialized collections of other
classes. We can more accurately
compare Collection to Delphi’s

TList and say that it is a class that
manages one or more instances of
another class. However, TList han-
dles a series of untyped pointers
which we must explicitly typecast
as their actual classes when we ref-
erence them. In Jasmine we can
define precisely which class our
collection manages and reference
the instances as that class
implicitly.

Class Relationships
The Employee.Dept property in List-
ing 2 shows how we would set up a
reference to another class. Here
the Dept property returns an
instance of the as yet undefined
class Department. Note that we’re
not getting back a department
number or key value like we would
expect in a SQL table, but we’re get-
ting back the entire department
instance. If you think about it in
terms of Delphi classes, if you
access the Font property of a TEdit
control, you are really accessing an
instance of TFont from an instance
of TEdit. The same concept applies
here. The database maintains the
reference by storing the object
identifier (OID) for the Department
instance that has been associated
with a given Employee instance.

In an SQL table we would have
probably stored a department
number as an employee column.
Then when we wanted to access all
the employees in a given depart-
ment, we would just filter on the
department number in the
employee table. Using the
department number in this way
would give us a one to one
relationship between Employee and
Department and a one to many
relationship between Department
and Employee.

It would be possible in our object
oriented database to obtain the
OID of a particular department and
scan the Employee class for match-
ing OIDs to find the subset of
employees for the department. But
there is a better way. Listing 3
shows the class definition for
Department. We define only three
properties: a department name, a
manager (returning an Employee
instance for the department
manager), and a collection of

defineClass Employee
super: Person

{
class:
Integer NextEmployeeNo default: 1;

instance:
Integer EmployeeNo mandatory:;
Department Dept;
Bag<String> Hobbies;

};

➤ Listing 2

July 1998 The Delphi Magazine 47

employees assigned to the
department.

The Staff property is a multi-
valued property, or collection,
containing references to all the
employees in the department. We
use the Bag keyword again and
specify that this is a collection of
employee instances. Remember
that String is just a class in the
Jasmine object hierarchy, as
Employee is, so there’s no concep-
tual difference between a collec-
tion of string instances and a
collection of employee instances.
Behind the scenes, Staff contains
a list of OIDs for all the employees
assigned to a given department.
We could iterate through the Staff
collection and gain access to the
complete instances of each
employee in the department. It is
through this multi-valued property
that we define the one-to-many
relationship between Department
and Employee.

Many To Many Relationships
Many to many relationships in data
are not uncommon. Our employee
hobbies example is one such case:
an employee can have any number
of hobbies and a hobby can be
associated with any number of
employees. Another more realistic
example is a class for products and
a class for suppliers. We may have
more than one supplier for the
same product, and our suppliers

will generally be providing us with
more than one product. In this
case, a relational database will
always require an extra table to do
nothing but hold the keys that
make the associations between the
two entities. We would have a Prod-
ucts table, a Suppliers table, and a
ProductsSuppliers table, probably
containing nothing more than a
product code and a supplier code.

In an object database, we would
simply have a multi-valued prop-
erty in the two main classes, refer-
ring to the associations in the
other class. The need for a sepa-
rate relationship class is elimi-
nated. Listing 4 shows a simplified
example.

Methods
Methods are to object databases
what stored procedures and trig-
gers are to relational databases,
but methods offer much more flexi-
bility and are more seamlessly
integrated into the database archi-
tecture. A good deal of database
functionality is built into the object
hierarchy in the form of system
methods. For example, the system
class Composite (from which all
user-defined data classes
descend) implements a system
method called delete() which
deletes an instance from the class.
In SQL we would use the DELETE
statement with a WHERE clause that
isolated the row we wanted to
delete. In an object database, we
would obtain the instance of inter-
est and call its delete() method.

Like properties, methods can be
instance-level or class-level.
Instance-level methods are called
from and typically operate on an
instance of the class. We would
define a class-level method to per-
form operations that do not
require a specific instance of the
class. For example, we might have
a class called Orders containing
customer orders. In this class we

defineClass Department
super: Composite

{
instance:
String Name mandatory:;
Employee Manager;
Bag<Employee> Staff;

};

➤ Listing 3

defineClass Product
super: Composite

{
instance:
Integer ProductCode;
String Name;
Bag<Supplier> Suppliers;

};
defineClass Supplier
super: Composite

{
instance:
Integer SupplierCode;
String Name;
Bag<Product> Products;

};

➤ Listing 4

addProcedure Integer Person::instance:Age()
{
$Date Today;
$Today = Date.getCurrent();
$return(Today.difference(self.DateOfBirth, YEAR));

};

➤ Listing 5

might define a method called
ReadyToShip which returns a collec-
tion of all instances in Orders that
are identified as ready to ship. The
method does not operate on any
particular member of the class, but
rather on the class as a whole, so
we would define it as a class-level
method.

We can write our own methods
for the classes we create using C,
C++, or ODQL (or a mixture). Refer-
ring back to our Person class shown
in Listing 1, let’s define a method
called Agewhich returns a person’s
age in years calculated from their
date of birth and today’s date. List-
ing 5 shows how we write an ODQL
method attached to the Person
class.

The addProcedure ODQL com-
mand adds a method definition to
an existing class definition. The
first argument is the class returned
by the method, which in this case
is an integer. If the method were to
act as a procedure rather than a
function, we would specify a return
class of Void. Following the return
class, we identify the interface to
the method by its class name, level,
method name, and parameter list.
Here we are adding a method to the
class Person, it is an instance-level
method, its name is Age and it has
no parameters.

The body of the method is then
defined within braces. The ODQL
statements within the method
body are preceded with the $
symbol. The first line defines a vari-
able called Todaywhose datatype is
the system class Date. The second
line sets the value of Today to be the
current date set on the system
clock by calling Date’s class-level
method getCurrent(). The third
line uses the date stored in Today
and calls the instance-level
method difference() to compute
the number of years between
today’s date and the date in the

48 The Delphi Magazine Issue 35

addProcedure Void Employee::instance:delete()
{
$Review.DeleteReviewsForEmployee(self);
$self.super::delete();
$return();

};

DateOfBirth property. Within
methods, we can use the self vari-
able to refer to the instance object
that the method is operating on. In
our case, self refers to the Person
instance which we are using to call
the Age method. This calculation is
then passed into the ODQL return
statement which is used to end
execution of the method and set
the return value.

Using Methods
To Access Legacy Data
Method code could also include C
or C++ code and as such could
access anything within the system
that could be accessed through a
C/C++ program. For instance, we
would make Windows API calls or
even interface to the client API for a
completely different database
system, providing a gateway to
legacy databases through a single
database architecture. Jasmine
even goes so far as to provide spe-
cialized classes for accessing SQL
databases so that you can use SQL
in your methods and queries to
process data within existing SQL
databases. This is a significant
advantage for object databases
since you can build bridges to the
legacy systems in the object data-
base, and your client applications
would access the legacy data as
though it were class instances in
the object database. With this
multi-tiered approach, client appli-
cations would only be concerned
with connectivity to the object
database. The object database
server would be the only point
requiring direct connectivity to the
legacy databases.

The Trigger Effect
There are no triggers per se in an
object database. Think about what
a trigger is used for in a relational
database. A trigger defines some
action to take place when a row is
added, modified, or deleted. For

example, if a row was deleted in a
master table, you could write a
delete trigger to automatically
delete associated rows in a child
table. If the values in certain col-
umns were changed, you could
write an update trigger to make
appropriate adjustments in other
related tables.

In an object database, we delete
an instance by calling its delete()
method. If we want to take some
special action when an instance
was deleted (like a cascading
delete), we would use the polymor-
phic characteristic of objects and
reimplement the delete() method
for our class. Jasmine calls this
‘refining a method’ while in Delphi
we’ve come to call it a ‘overriding a
method.’ To override a method we
simply define a method in our sub-
class with exactly the same name,
return class, and parameters as the
method in the superclass we are
overriding.

Listing 6 shows an example of a
delete() method override for our
Employee class. When we delete an
employee we also want to delete all
associated instances of perform-
ance reviews in the Review class.
The Review class contains a
method called DeleteReviews-
ForEmployee which does this for us,
we just need to call it when we
delete an employee.

The first line calls the class-level
method Review.DeleteReviewsFor-
Employee. We’re assuming this
method accepts an instance of
Employee as its parameter so it can
figure out for itself which employee
we’re talking about. Next we need
to call the delete() method of the
superclass to make sure all the
normal delete operations get per-
formed. The second line does this
and includes some special syntax
to make sure we get the right
delete() method.

If we had just said self.delete(),
we would be recursively calling
this same method over and over.
What we really want is to call the

implementation of delete() that
exists in the immediate superclass,
Person. We can qualify the method
name with the name of the class
containing the specific method
implementation we want. For
example, self.Person::delete().
Or we can qualify it with the special
keyword super as we’ve done here
to mean ‘take the delete() method
from my superclass, whatever the
class happens to be named’. In
Delphi terms, this is equivalent to
the inherited keyword.

Methods in an object oriented
database are all considered virtual.
That is, whenever we execute a
method for a given instance, the
correct method implementation in
the class hierarchy is always used
depending on which class the
instance was created for. Remem-
ber that all instances in a given sub-
class are also present in every
superclass and can be accessed
from any of those superclasses.
For example, let’s suppose we have
different implementations of
delete() in Person and Employee. If
we delete an instance in Person that
happens to exist in Employee, then
the Employee.delete() method gets
executed even though we are
accessing the Person class.

Conclusion
What I hoped I have shown you is
that setting up an object oriented
database has some similarities to a
traditional relational database and
some similarities to the Delphi
object architecture. Both of these
concepts should be very familiar to
us and, therefore, working with an
object oriented database should
not be a monumental re-education
effort. Now that we’ve got a good
handle on defining the structures
in an object database, next month
we’ll look at accessing the data and
how to plug it into a Delphi
application.

Steve Troxell is a software engi-
neer for Ultimate Software Group
in the USA. He can be reached at
Steve_Troxell@USGroup.com

➤ Listing 6

	Class Families
	Object Query Language
	Creating A Class
	Subclasses
	Class-Level Properties
	Multi-Valued Properties
	Class Relationships
	Many To Many Relationships
	Methods
	Using Methods To Access Legacy Data
	The Trigger Effect
	Conclusion

